

Current Vehicles at Mars

- Orbiters
 - MAVEN, MRO, Odyssey
 - Trace Gas Orbiter, Mars Express
 - Mangalyaan (India)
- Rovers
 - Curiosity (MSL), Opportunity (MER)
- More on the way:
 - Mars 2020 rover
 - ExoMars rover (ESA)
 - Hope orbiter (UAE)
 - Chinese orbiter
 - Chinese lander and rover
 - Mangalyaan 2 (India)
 - Red Dragon(s)? (SpaceX)

Concepts for Affordable Human Missions to Mars

- There are a number of viable architectures for human exploration of Mars:
 - NASA SEP/chemical hybrid option
 - Deep Space Transport concept that operates from a Deep Space Gateway
 - Lockheed Martin "Basecamp" and lander
 - Boeing (similar to NASA architecture)
 - SpaceX reusable Mars architecture
 - JPL Minimal Mars architecture
 - Many others
- JPL Minimal Mars has been costed by the Aerospace Corporation and audited by the NASA Office of the Inspector General
 - Example of an architecture that could, to a first order, fit within NASA's budget adjusted for inflation
 - Costs could be reduced by international contributions and by descoping the first Mars orbital mission (e.g. no Phobos)

Minimal Architecture Concept

Crew of 4 to surface; 8 SLS launches

Six Vehicle Types That Could Enable Crewed Missions to Mars

Vehicles	# Vehicles per Mission
Orion	1
SLS	8
SEP Tug ~100 kWe	2
Deep Space Habitat (One is a resupply version)	2
In-Space Chemical Propulsion Stage	3
Mars Lander (One crew and one cargo)	2

EDL Concept for Crewed Mars Lander

Hypersonic Aeromaneuvering Mach 5 Alt: 4.2 km

Note: There are no deployable decelerators or parachutes.

The Range of Planetary Surface Environments

- Mars equatorial proven solar survivability (MER)
- Mars 40° latitude
 - Large accessible ice deposits near surface
 - Challenging, but might be possible with solar power
- Mars polar
 - Access to ice
 - Would require nuclear power for long missions
- Caves (Mars or Moon) total darkness
- Lunar non-polar 14 days of darkness
- Lunar Shackleton Crater
 - Rim: ~1.5 days of darkness
 - Inside: total darkness

Human Mars Surface System Conceptual Power Cases

- ISRU vs. non-ISRU
 - Significant difference in power (ISRU ~20 kWe)
- Surface habitat power (~15 kWe)
- Pressurized rover power options (~5 kWe)
 - Solar and batteries
 - Fuel cells
 - 5 kWe class advanced Stirling RTGs
- Central vs. distributed power vs. flexible hybrid architecture
- Dust storm survival
 - Infrequent, but can be severe
 - Opportunity has survived >13 Earth years

Robotic Vehicle Concepts to Support Human Missions

- ATHLETE type vehicles to relocate large elements
- Tractor type vehicles for digging and moving regolith
- Moderate to deep drilling systems
- Fine manipulator rovers to configure crew transfer tunnels, ISRU connections, troubleshooting and contingency deployment of arrays and radiators, perform inspections and repairs
- Telecom relay rovers
- Teleoperated sterilized rovers for special regions
- Extreme terrain exploration rovers (cliffs, caves)

Pre-decisional. For discusion purposes only.